Проблемы при регистрации на сайте? НАЖМИТЕ СЮДА!                               Не проходите мимо весьма интересного раздела нашего сайта - проекты посетителей. Там вы всегда найдете свежие новости, анекдоты, прогноз погоды (в ADSL-газете), телепрограмму эфирных и ADSL-TV каналов, самые свежие и интересные новости из мира высоких технологий, самые оригинальные и удивительные картинки из интернета, большой архив журналов за последние годы, аппетитные рецепты в картинках, информативные Интересности из Интернета. Раздел обновляется ежедневно.                               Всегда свежие версии самых лучших бесплатных программ для повседневного использования в разделе Необходимые программы. Там практически все, что требуется для повседневной работы. Начните постепенно отказываться от пиратских версий в пользу более удобных и функциональных бесплатных аналогов.                               Если Вы все еще не пользуетесь нашим чатом, весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта.                               Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD.                               Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке.                              

45-нм Что есть что?

Для начала приведем некоторые факты, чтобы читатель смог сопоставить: 45 нм — это много или мало?

Этот техпроцесс отличается от своего предшественника, 65 нм, и заслуживает пристального внимания. Начнем с того, что основные тезисы 45-нм норм Intel опубликовала еще в ноябре 2003 года.

Так, первый транзистор, созданный исследователями Bell Labs в 1947 году, помещался на ладони, в то время как новый 45-нм транзистор Intel в 400 раз меньше красной кровяной клетки человека. И если бы удалось в такой же степени, как транзисторы, уменьшить жилой дом, мы не смогли бы разглядеть его невооруженным глазом. Увидеть 45-нм транзистор можно только при помощи самого современного микроскопа. Такой транзистор, входящий в состав готовящегося к выпуску процессора нового поколения с кодовым названием Penryn, будет примерно в миллион раз дешевле, чем транзистор образца 1968 года. И если бы цены на автомобили упали пропорционально, сегодня новый автомобиль стоил бы около 1 цента. 45-нм транзистор способен включаться и выключаться примерно 300 млрд раз в секунду. За время, необходимое ему для включения или выключения, луч света проходит меньше 2,5 мм.

С выпуском новой нормы Intel в очередной раз подчеркнула справедливость закона Мура, который, по мнению компании, не потерял своей актуальности, хотя его и пытаются похоронить уже не первый год (честно говоря, теперь он выглядит скорее не как закон, а как своеобразная линия эволюции, которой стараются придерживаться).

Прежде чем начать предметный разговор о 45 нм и примененных в нем новшествах, нелишне освежить в памяти некоторые тезисы, имеющие отношение к актуальным сегодня технологическим нормам 65 нм по версии Intel. Процесс 65 нм имеет кодовое обозначение P1264. Нельзя сказать, что его своевременное внедрение далось инженерам Intel легко — переход на новые технологические нормы сопровождала масса трудностей. Во-первых, требовалось использовать технологию «напряженного кремния» (strained silicon) второго поколения, во-вторых — новые диэлектрики low-k и медные межтранзисторные соединения. Кроме того, техпроцесс 65 нм разрабатывался с помощью существующего литографического оборудования, которое применялось и при внедрении предыдущего техпроцесса, 90 нм. А для перехода на более тонкий процесс изготовления полупроводниковых элементов пришлось прибегнуть к технологии фазового сдвига фотографических масок.

На этом фоне два основных новшества, появившихся в технологии 45 нм, выглядят едва ли не революцией — речь идет не о простом «измельчении» линейных размеров, а о внедрении диэлектрика high-k и о применении металлического затвора. Что дает благодатную почву для рассуждений на тему, каковы выгоды от новшеств и не окажется ли столь глубокое вмешательство в конструкцию транзистора неоправданным?

Новый техпроцесс имеет обозначение P1266 — соблюдается четкая последовательность в наименованиях, в соответствии с которой технологический процесс 32 нм (2009 год) будет назван P1268, а 22 нм (2011-й) — P1270. Таким образом, как минимум до 2011 года нам гарантируют справедливость закона Мура.

По сравнению с нормой 65 нм 45-нм прибор обусловливает возможность разместить на одинаковой площади вдвое большее количество транзисторов — в силу естественного уменьшения линейных размеров. При этом имеется 30%-ное уменьшение рассеиваемой мощности при переключении с одновременным 20%-ным увеличением скорости переключения транзистора. Кроме того, в пять раз сокращается ток утечки от истока к стоку и в десять — ток утечки сквозь затвор транзистора. По заявлению специалистов Intel, таких показателей невозможно было бы достичь без комплексного применения изолятора high-k и металлического затвора.

Пожалуй, оба нововведения выглядят как одно из крупнейших достижений Intel в микроэлектронике, начиная с конца 1960-х годов, ведь все это время конструировались МОП-транзисторы с поликремниевым затвором. На данном этапе развития технологий преследуются две цели: уменьшение токов утечки, ставших бичом современной микроэлектроники, и уменьшение времени переключения, что означает повышение быстродействия полупроводникового прибора.

Обычный транзистор и новый high-k

Если по поводу увеличения быстродействия вопросов не возникает, то с токами утечки ситуация хотя и несколько улучшилась, но все же далека от идеала. Миниатюризация транзисторов не безгранична, и уже ясно различим предел технологии в ее сегодняшнем виде. Например, толщина диэлектрика затвора (компонент транзистора, обеспечивающий прохождение электронов только от истока к стоку) у прибора, изготовленного с применением норм 65 нм, составляет 1,2 нм. Более трех десятков лет в качестве материала диэлектрика затвора использовался диоксид кремния, молекула которого состоит из одного атома кремния и двух атомов кислорода. А толщина в 1,2 нм (следствие «утоньшения» техпроцесса) — это пять атомарных слоев. Столь тонкий изолятор просто физически не может сдержать токи утечки, которые неизбежно возникают, убивая на корню все прелести тонкого техпроцесса. Отдельно взятый современный транзистор способен работать на частотах порядка десятков гигагерц, и лишь различные паразитные факторы мешают комплексным устройствам приблизиться к подобным значениям. Если сделать диэлектрик затвора тоньше 1 нм, ток утечки возрастет по экспоненте.

Компания Intel справедливо решила, что дни диоксида кремния в качестве материала для диэлектрика затвора давно сочтены и необходима срочная замена. Эту замену нашли в лице диэлектрика high-k — материала на основе гафния, обладающего высокой степенью диэлектрической проницаемости. Изолятор high-k позволил увеличить полевой эффект транзистора и сделать слой диэлектрика более тонким — естественно, с одновременным уменьшением тока утечки сквозь затвор. С целью увеличения полевого эффекта применен и металлический затвор. К слову, в свое время поиск необходимых материалов диэлектрика и затвора оказался для Intel сложнейшей задачей, и сегодня специалисты компании утверждают, что пока не намерены открывать точный их состав, однако отмечают — им потребовалось найти компромисс, удовлетворяющий сотням различных требований. Кроме того, в официальных материалах Intel имеется утверждение, что еще ни одна компания-чипмейкер не приблизилась к аналогичному уровню развития технологий, и до внедрения техпроцесса 32 нм или даже позднее Intel не ожидает присутствия на рынке конкурентов, располагающих технологиями с применением high-k-диэлектриков и металлических затворов. В этой связи справедливо считать, что с промышленным вводом 45-нм техпроцесса компания приложит все усилия для получения максимальной прибыли от чипов, изготовленных на базе этой технологии — принцип «куй железо, пока горячо» проявит себя однозначно.

Упомянутый чип памяти SRAM, выполненный по нормам 45 нм, был создан — в январе 2006-го, и имел следующие характеристики: емкость 153 Мбит, площадь чипа 119 мм2, количество транзисторов свыше 1 млрд (что в принципе несложно подсчитать, ведь одна ячейка памяти формируется при помощи шести транзисторов).

Компания Intel также упомянула, что чип изготовлен на литографическом оборудовании с длиной волны 193 нм, и этот факт позволяет сделать некоторые выводы. Разумеется, речь идет о литографических установках глубокого ультрафиолета (Deep UltraViolet).

В свое время Intel имела серьезные проблемы с поставками фотолитографического оборудования и еще в период выпуска Pentium III с ядром Tualatin была вынуждена прибегнуть к некоему трюку, — применить фазосдвигающие фотографические маски, кстати, весьма дорогие.

(Оборудование с длиной волны 193 нм имеется в наличии, и оно прекрасно подходит для производства устройств по нормам 90 нм, но является слишком грубым даже для 65 нм, не говоря уже о 45 нм. Благодаря имеющемуся опыту Intel дорабатывает фазосдвигающие фотомаски с учетом особенностей более тонкого технологического процесса и приступает к производству 45-нм устройств на базе старого фотолитографического оборудования с длиной волны 193 нм. В очередной раз фазосдвигающие маски выступают в роли спасительной соломинки для Intel.)

Автор: banger
.:: Статистика ::.
Пользователи
HTTP: 8
IRC: 7
Jabber: 0
( состояние на 22:56 )
ADSL-газета: Ежедневно свежие анекдоты, гороскоп, погода, новости, ТВ-программа, курс валют

Интересности из Интернета: Интересные статьи на разнообразные темы, найденные на просторах интернета

Компьютерная консультация

Единый личный кабинет