Секретное оружие или зачем небоскребам шпили

Что находится на самой верхушке небоскреба? Очень часто – ничего, вернее шпиль, без которого вполне можно было бы обойтись, если бы не гонка по вертикали между архитекторами, где для победы иногда не хватает считанных сантиметров. Впрочем, это не относится к башне Лахта Центра, у которой шпиль – неотъемлемый элемент архитектуры, за эстетикой которого скрываются важные инженерные системы.
Стремление вверх характерно для архитектуры фактически всех эпох. Башни готических средневековых соборов, шпили колоколен должны были отражать устремленность к Богу. При этом самые высокие храмы — даже с тысячелетней историей — вполне вписываются в современные критерии, переводящие обычную высотку в разряд небоскребов. Например, высота Северной башни Страсбургского собора – 142 м. Ажурный 42-метровый шпиль из песчаника, венчающий башню, – яркий пример подхода, который средневековые архитекторы использовали для придания легкости своим более чем масштабным творениям.

Страсбургский собор, Франция. Шпиль собора — самый высокий на протяжении 4 столетий. Сегодня такой рекорд невообразим
Сооружение высокого, но легкого шпиля, по высоте порой превосходящего саму башню, при средневековом уровне строительных технологий, действительно оказывалось наиболее эффективным способом приблизиться к господу. Этот способ с блеском использовали в Руане, возводя в 1557 году над собором Руанской Богоматери башню Сен-Ромен. Деревянный шпиль, покрытый оловянными пластинами, возвышался над нефом на 82 м при общей максимальной высоте Notre-Dame de Rouen 151 м. Правда, дерево имеет свои изъяны, один из которых – горючесть. Прямого попадания молнии в 1822 году шпиль не пережил, и в середине XIX века его заменили на металлический, массой 1200 тонн.

Руанский собор, Франция. Уже с металлическим шпилем. Благодаря шпилю, четыре года постройка удерживала пальму первенства среди высочайших зданий мира
Не надо далеко ходить за примерами использования такого подхода и в отечественном храмостроительстве. Даже несмотря на то, что традиционная русская православная архитектура сооружения шпилей не предполагала – для нее свойственны византийские сферические или более поздние шлемовидные купола и шатры. Но с приходом больших архитектурных стилей – в данном случае барокко – все уже совсем иначе. 40-метровый шпиль позволял Петропавловскому собору до 2012 года сохранять статус самого высокого здания Санкт-Петербурга.
Не потеряли своего значения шпили и в гонке по вертикали, развернувшейся в эпоху настоящих небоскребов. Соревнование высот порой перерастало в настоящую битву. Такую, как противостояние Уильяма Ван Алена, проектировавшего знаменитое здание Крайслера в Нью-Йорке и Крэга Северанса – архитектора Уолл-стрит 40, сейчас гораздо более известного как Трамп-билдинг.
Изначально предполагалось, что Крайслер-билдинг должен был достигнуть отметки 281, 84 м, поэтому в проекте Уолл-стрит 40 появился флагшток, высотой чуть более 15 м, делавший будущую башню Трампа, пусть менее чем на метр, но выше конкурента (282, 55 м). План провалился. У Уильяма Ван Алена имелся козырь в рукаве – стальной шпиль, который секретно собирался под куполом строящегося небоскреба и вознесший его в 1930 году на высоту 319, 43 м.
Впрочем, самым высоким зданием мира Крайслер-билдинг оставался меньше года – уже весной 1931-го завершилось строительство знаменитого Эмпайр Стейт Билдинга. Правда и этот небоскреб был выше Крайслера всего на 60 см – но без шпиля. А 60-метровый шпиль Эмпайр Стейт в отличие от предшественников, даже имел вполне осмысленный функционал. Вернее, в то время казалось, что осмысленный – это была мачта для швартовки дирижаблей. Но ни один дирижабль к небоскребу так и не причалил, и позднее на месте мачты установили телевизионную антенну.

А впрочем, кое-какие дирижабли тут все же швартуются. Нью-йоркские рекламщики красиво обыгрывают историю со шпилем
Сегодня Совет по высотным зданиям и городской среде (The Council on Tall buildings and Urban Habitat, CTBUH) при оценке высоты зданий использует понятие «конструктивной высоты» — в нее не попадают антенны, мачты, флагштоки. Но четкого разграничения между «неконструктивными элементами» и шпилями все же нет. Например, 124-метровый шпиль Башни Свободы Всемирного торгового центра 1, построенного на месте разрушенных башен-близнецов в Нью-Йорке, — сооружение внушительное, но отнюдь не выглядящее неотъемлемой конструктивной частью небоскреба. Тем не менее, именно за счет этого элемента здание стало самым высоким в США (541, 3 м).
Впрочем, законодатели мод в строительстве супертоллов сегодня совсем не американцы. По-настоящему на высоте Ближний Восток и Китай, а там не размениваются на мелочи, выигрывая пару метров за счет антенн и флагштоков. Высота Королевской Часовой Башни в комплексе Абрадж аль-Бейт в Мекке — 601 м вместе с 45-метровым шпилем.

Без шпиля же это гигантское сооружение представить себе достаточно сложно. Верхушка здания украшена самым большим в мире полумесяцем массой 107 тонн и диаметром 23 м.
Примечательно, что при его создании инженеры сумели обойтись без силового каркаса. В полумесяце разместились служебные помещения и комната для молений, а на самом шпиле установлены 160 мощных громкоговорителей, транслирующих призыв к молитве на 7 км.
По поводу конструктивной принадлежности шпиля к самому высокому зданию в мире – 828-метровой Бурдж-Халифа в Дубае, — вопросов не могло возникнуть у самого критически настроенного «эксперта по небоскребам». Обнаружить границу между обитаемой зоной, заканчивающейся на высоте 643,3 м и почти 185-метровым шпилем из металлических конструкций, невооруженным взглядом невозможно.
Конструктивно именно это решение наиболее близко к тому, которое применяется при строительстве Лахта Центра.
В петербургском супертолле шпиль – также не способ прибавить лишние метры, а стилистически и функционально неотъемлемая часть проекта. Кроме того, эта часть здания – базовая станция для не менее уникальной чем сама башня системы обслуживания фасадов (СОФ) — своеобразного поезда-подъемника, передвигающегося по рельсам, проложенным в ребрах башни между фасадными панелями и позволяющий мыть или заменять стекла даже в труднодоступных местах сложного по форме небоскреба.
Кроме того, внутри шпиля расположено оборудование для обслуживания самых верхних уровней башни Лахта Центра, и, как и во всех сверхвысоких зданиях — системы связи и навигации, эффективность работы которого за счет высоты расположения вырастает многократно.

В шпиле расположится навигационное оборудование, которое исключит столкновение воздушных судов с башней даже в условиях нулевой видимости — за счет GPS-сигналов система избегания столкновения с землей на ВС точно идентифицирует «рельеф местности» — то есть, башню. Фото Виктора Гусика
Что касается конструкции шпиля Лахта Центра — это остроконечная пятигранная пирамида, расположенная вокруг и над центральным железобетонным ядром башни. Она опирается на перекрытие 83 этажа на отметке 344,25 м в местах расположения колонн здания. Высота шпиля 117,75 м, ширина грани у основания пирамиды — 16 м. Перекрытия, отделяющие нижнюю эксплуатируемую зону шпиля от верхней, технической расположены на отметке 87 этажа (368,8 м) и 88 уровня (377,35 м).

Силовые элементы шпиля – колонны — выполнены из круглых труб диаметром 1020 мм, завершение (от отметки 427,87 м) – также стальная труба, но диаметром 1420 мм. Общий вес металлоконструкций шпиля превышает 2 тыс. тонн.

Подшпилевые колонны-«трубы» окружают ядро башни Лахта Центра. Силовые элементы такого типа начинаются с 83 этажа
Место установки: последний отрезок композитной колонны состыкуют с трубой:

Вот таким образом:
Та же труба, на земле:

В роли строителя — главный человек, проектирующий комплекс — начальник управления по проектированию Юлия Гуляк. Смотрит на практике, легко ли воплотить все архитектурные замыслы. В руках — ключ на 130, резьба — м90
А вот остекления здесь не будет: стены шпиля – это ажурная металлическая сетка, которая крепится на силовые элементы с помощью стальных ригелей, расположенных с шагом 4,2 метра по высоте шпиля. Все дело в климате.
Финский залив – не Персидский. Перепад температур у подножия и на вершине Бурдж Халифа, пусть и вдвое большего по высоте чем башня на Лахте, составляет порядка 10 градусов. То есть даже в самую суровую аравийскую зиму это всегда будут положительные значения. Для шпиля Лахта Центра обледенение – одна из главных проблем. Расчетная усредненная гололедная нагрузка на гранях шпиля может достигать 50 кг на квадратный метр.

Готовых решений этой проблемы на рынке нет до сих пор: стандартная общемировая практика — временные конструкции, которые устанавливаются у подножия небоскреба для защиты пешеходов от падения льда.

Строительство временной пешеходной галереи для защиты от сосулек – вокруг World Trade Center, Нью-Йорк
Базовым решением проблемы в Лахта Центре стала замена стекла сеткой, что, во-первых, сократило площадь поверхности, где могут образовываться наледи, а во-вторых обеспечило продуваемость шпиля. При этом правильный подбор фактуры и цвета сетки позволяет создать визуальное единство шпиля и стеклянных фасадов, расположенных ниже. Кроме того, в металлические конструкции шпиля встраивается кабель нагрева, а сетка будет очищаться ото льда с помощью вибрации, в нужный момент создающейся короткими электрическими импульсами.
В отличие от борьбы со льдом, технологии снижения ветровой нагрузки отработаны уже достаточно хорошо. После скрупулезных расчетов проводятся обязательные модельные испытания в аэродинамической трубе. Как показала продувка башни Лахта Центра, наиболее неблагоприятные углы атаки с точки зрения усилий в элементах и деформаций для санкт-петербургского небоскреба – 190o и 270o. При таких условиях смещение здания от вертикальной оси на уровне подножия навершия шпиля (428 м) составляет от 437 до 462 мм. Но это все еще очень далеко от предельных значений.
А вот для проведения собственно работ по монтажу шпиля, критичная ветровая нагрузка куда ниже. До учета углов атаки даже не доходит. Скорость ветра превысила 15 метров в секунду? Работа кранов останавливается. А для Петербурга, тем более для побережья Финского залива – это легкий бриз. Так что собрать «лего» шпиля из металлического конструктора весом в пару тысяч тонн – задача нетривиальная. Как раз сейчас строители приступают к ее решению. На высоте в четыре сотни метров.
